Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Discussion on the Standard SAE-ARP-4754A and a Proposal for Using it in Product Certification and Qualification of Staff

2012-10-02
2012-36-0572
Systems such as satellites, aircrafts, automobiles and air traffic controls are becoming increasingly complex and/or highly integrated, as prescribed by the standard SAE-ARP 4754A Standard. They integrate many technologies and they work in very demanding environments, sometimes with little or no maintenance, due to the severe conditions of operation. To survive such harsh operating conditions, they require very high levels of dependability, to be reached by a diversity of approaches, processes, components, etc. Some are suggested by the SAE-ARP-4754A as one of the highest level standards to be met. So, it is important to know it and its consequences for product and staff deeply. The aim of this paper is to present: a discussion on the standard SAE-ARP-4754A and a proposal for using it in product certification and qualification of staff.
Technical Paper

Stabilizing and Improving the Active Vibration Damping by a New S-Z Mapping for Digital Control

2000-12-01
2000-01-3297
This paper presents an analytical and simulation study of the stabilization and improvement of the active vibration damping of a system modeled by a simple analog harmonic oscillator driven by discrete time control. Initially, this control is the Bilinear (or Tustin) s-z mapping equivalent of a continuous-time asymptotically stable Proportional plus Derivative (PD) control. It is tested with high values of the sampling period. It is shown that all classical mappings (Tustin, Schneider, etc.) tested may instabilize the system. To circumvent this, we propose and use a new (ST1) mapping that behaves better than the classical ones tested under the same conditions. We also model an active discrete control of a suspension of a vehicle, and compare the performance between the PD controllers designed by Bilinear and by the new (ST1) S-Z mappings, for this example.
Technical Paper

Highly Accurate Measure of Time in PC Simulations of Control Systems with Sensors in the Loop

2000-12-01
2000-01-3296
The measure of time intervals with relatively high accuracy (of 1 milisecond, at least) in PC computers is a relatively hard task to solve. But this is essential for the digital simulation, with sensors in the loop, of fast control systems. This work allows the reading of the programmable internal timer 8253 present in a typical PC, reaching 1 ms resolution, at least, through a C high level language routine. The determination of the angular velocity of a 53M2-30H Contraves 3-axis dynamic simulator used in that simulation was improved by the use of this work, allowing the acquisition of consecutive measures of angles and angular velocities with a time interval smaller than 10 ms in some cases. Using this routine and other simulator control and monitoring softwares we estimated the angular velocity faster (100 ms × 210 ms)and better than the simulator Rate Readout Module, and used it in a fast real time control simulation.
Technical Paper

A discussion on fault prognosis/prediction and health monitoring techniques to improve the reliability of aerospace and automotive systems

2018-09-03
2018-36-0316
Currently, aerospace and automotive industries are developing complexand/or highly integrated systems, whose services require greater confidence to meet a set of specifications that are increasingly demanding, such as successfully operating a communications satellite, a commercial airplane, an automatic automobile, and so on. To meet these requirements and expectations, there is a growing need for fault treatment, up to predict faults and monitor the health of the components, equipment, subsystems or systems used. In the last decades, the approaches of 1) Fault Prevention, 2) Fault Detection/Tolerance and 3) Fault Detection/Correction have been widely studied and explored.
Technical Paper

An Overview of Data Transmission Used in UAVs for Remote Sensing Surveillance and Environmental Management Systems

2015-09-22
2015-36-0543
The increasing development of Unmanned Aerial Vehicle (UAV) technologies has allowed greater use of UAVs as remote sensing platforms to enhance satellite and manned aerial vehicle remote sensing surveillance and environmental management systems. Particularly, the Brazilian National Institute for Space Research - INPE has an Environmental Data Collection System (SCD) since 1993. Recently, the MCTI (Ministry of Science, Technology and Innovation) opened the National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN). Both may need additional resources for their expansions in the near future as offered by UAV technologies. These needs illustrate the potential of UAV technologies as complement to existing or future systems. This paper presents an overview of data transmission used in UAVs for remote sensing surveillance and environmental management systems.
Technical Paper

A Method with Intergral Criteria to Determine Optimal Transitions between Control Modes

2014-09-30
2014-36-0368
Control systems that can switch between control modes have the advantage of being simpler to design than an equivalent system with a single mode. However, the transition between control modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the system. In this work, we will use integral criteria in an original way, to determine a coefficient on the system which should optimize the trajectory of the control signal, during the switching between two modes. Effectively, each transition will be done by a subsystem specific for it, according to the selected criterion. The simulations will be made in MATRIXx, using as models the system of control of attitude of the Multimission Platform, and a system which keeps the synchrony between two induction motors.
Technical Paper

A discussion on the Parameters of the Resistance Spot Welding Process and their Influences on the Quality of the Welded Joint Using Analysis and Design of Experiments

2021-03-26
2020-36-0180
Resistance Spot Welding is a manufacturing process widely used in several industrial segments, such as automotive, electronics, aerospace and others. It stands out from other welding processes, as it does not require addition material to join parts. This type of process needs to be robust and reliable in order to ensure the quality of the welded joint produced, as any variation in the quality of the weld point can affect the functionality and safety of the final product. The resistance spot welding process uses different technologies and operating sequences that depend on various characteristics, factors and parameters. The combinations and values of these allow for numerous possibilities, making their adjustments time-consuming, costly and exhaustive, so it is necessary to apply statistical techniques to optimize the process. In the literature, it is possible to find several statistical techniques for the optimization of the process.
Technical Paper

Integral of Modulus of Error Control for Smoothing Signals when Switching Modes of Aerospace and Automotive Systems

2015-09-22
2015-36-0445
Control systems that can switch between control or plant modes have the advantage of being simpler to design than an equivalent system with a single mode. However, the transition between these modes can introduce steps or overshootings in the state variables, and this can degrade the performance or even damage the system. This is can be of extreme importance in fields such as aerospace and automobilistic, as the switching between manual and autopilot modes or the switching of gears In this work, we will use integral criteria in original ways, to determine a coefficient on the system which should optimize the trajectory of the control signal, during the switching between two modes. Effectively, each transition will be done by a subsystem specific for it, according to the selected criterion. The simulations will be made in MATRIXx, MatLab or both, using models chosen from aerospace or automobilistic fields.
Technical Paper

A Discussion on the Methods of Thermal Cycling and Power Cycling for Reliability Prediction of Solder Joints of Electronic Components

2015-09-22
2015-36-0553
The increasing use of embedded electronics in aerospace and automotive vehicles increases the designers' concern regarding the reliability of the components as well as the reliability of their interconnections. The discussion about the most appropriate method for assessing the reliability of solder joints for a given application is an ever-present theme in the literature. Several methods of prediction have been developed for assessing the reliability of solder joints. The standard method established by the industries for assessing reliability of solder joints is the thermal cycling. However, when the thermal distributions in real applications are studied, particularly in some electronic components used in on-board electronics of space systems, the thermal cycling does not represent what actually happens in practice in the packaging.
Technical Paper

The Fault Avoidance and The Fault Tolerance Approaches for Increasing the Reliability of Aerospace and Automotive Systems

2005-11-22
2005-01-4157
In this work we discuss the fault avoidance and the fault tolerance approaches for increasing the reliability of aerospace and automotive systems. This includes: the basic definitions/concepts (reliability, maintainability, availability, redundancy, etc.), and characteristics (a priori analysis, a posteriori analysis, physical/hardware redundancy, analytical/software redundancy, etc.) of both approaches, their mathematical background and models (exponential, Weilbull, etc.), their basic theory, their methods and techniques (fault trees, dependence diagrams, Markov chains, etc.), some of their standards (SAE-ARP4761, AC 25.1309, etc.) and simulation environments (Cafta, etc.), and their applications to the reliability analysis and reliability improvement of aerospace and automotive vehicles. This is illustrated by some examples driven from the aerospace and automotive industries.
Technical Paper

A Discussion of the Performance Evaluation of Time Synchronization Algorithms for Networked Control Systems by Means of Model and Simulation

2014-09-30
2014-36-0382
With the growing complexity and integration of systems as satellites, automobiles, aircrafts, turbines, power controls and traffic controls, as prescribed by SAE-ARP-4754A Standard, the time de-synchronization can cause serious or even catastrophic failures. Time synchronization is a very important aspect to achieve high performance, reliability and determinism in networked control systems. Such systems operate in a real time distributed environment which frequently requires a consistent time view among different devices, levels and granularities. So, to guarantee high performance, reliability and determinism it is required a performance evaluation of time synchronization of the overall system. This time synchronization performance evaluation can be done in different ways, as experiments and/or model and simulation.
Technical Paper

An Overview of Models, Methods and Tools for Verification, Validation and Accreditation of Real Time Critical Software

2013-10-07
2013-36-0530
Real-time critical systems are those whose failures may cause loss of transactions/data, missions/batches, vehicles/properties, or even people/human life. Accordingly, some regulations prescribe their maximum acceptable probability of failures to range from about 10−4 to 10−10 failures per hour. Examples of such systems are the ones involving nuclear plants, aircrafts, satellites, automobiles, or traffic controls. They are becoming increasingly complex and/or highly integrated as prescribed by the SAE-ARP-4754A Standard. Those systems include, most of the time, real time critical software that must be specified, designed, implemented, validated, verified and accredited (VVA). To do that, models, specially the V-Model, are frequently adopted, together with methods and tools which perform software VVA to ensure compliance (of correctness, reliability, robustness, etc.) of software to several specific standards such as DO178-B/DO-178C (aviation) or IEC 26262 (automotive) among others.
X